Erik Baurdoux (LSE) - Lp optimal prediction of the last zero of a spectrally negative Lévy process
Dates: | 14 November 2019 |
Times: | 14:00 - 15:00 |
What is it: | Seminar |
Organiser: | Department of Mathematics |
Speaker: | Erik Bardoux |
|
Erick Baurdoux joins us for the Probability seminar.
Given a spectrally negative Lévy process $X$ drifting to infinity, we are interested in finding a stopping time which minimises the $L^p$ distance with the last zero of $X$.
We prove that solving this optimal prediction problem is equivalent to solving an optimal stopping problem in terms of a two dimensional strong Markov process involving the duration of the excursion of $X$ away from the negative half line.
We show that an optimal stopping time is given by the first time that $X$ exceeds a boundary depending on the time spent above the level zero.
Speaker
Erik Bardoux
Role: Associate Professor in Statistics
Organisation: LSE
Travel and Contact Information
Find event
Frank Adams 2
Alan Turing Building
Manchester