Events at The University of Manchester
  • University home
  • Events
  • Home
  • Exhibitions
  • Conferences
  • Lectures and seminars
  • Performances
  • Events for prospective students
  • Sustainability events
  • Family events
  • All Events

Alexander Gilbert - Quasi-Monte Carlo methods for the uncertainty quantification of eigenvalue problems

Dates:20 March 2020
Times:14:00 - 15:00
What is it:Seminar
Organiser:Department of Mathematics
Speaker:Alexander Gilbert
See travel and contact information
Add to your calendar

Other events

  • In category "Seminar"
  • In group "(Maths) Numerical analysis and scientific computing"
  • In group "(Maths) Maths seminar series"
  • By Department of Mathematics

Dr. Alexander Gilbert from Institute for Applied Mathematics at Heidelberg University will be speaking at this seminar. Abstract: Eigenvalue problems are useful for modelling many important physical phenomena, ranging from photonic crystal structures to quantum mechanics to the neutron diffusion criticality problem. In many of these applications the model parameters are unknown, in which case one aims to quantify the uncertainty in the eigenproblem model. With this as motivation, we will study an elliptic eigenvalue problem with coefficients that depend on infinitely many stochastic parameters. The stochasticity in the coefficients causes the eigenvalues and eigenfunctions to also be stochastic, and so our goal will be to compute the expectation of the minimal eigenvalue. In practice, to approximate this expectation one must: 1) truncate the stochastic dimension; 2) discretise the eigenvalue problem in space (e.g., by finite elements); and 3) apply a quadrature rule to estimate the expected value.In this talk, we will present a multilevel quasi-Monte Carlo method for approximating the expectation of the minimal eigenvalue, which is based on a hierarchy of finite element meshes and truncation dimensions. To improve the sampling efficiency over Monte Carlo we will use a quasi-Monte Carlo rule to generate the sampling points. Quasi-Monte Carlo rules are deterministic (or quasi-random) quadrature rules that are well-suited to high-dimensional integration and can converge at a rate of 1/N, which is faster than the rate for Monte Carlo. Also, to make each eigenproblem solve on a given level more efficient, we utilise the two-grid scheme from & Zhou 1999 to obtain the eigenvalue on the fine mesh from the coarse eigenvalue (and eigenfunction) with a single linear solve.

Speaker

Alexander Gilbert

Organisation: Institute for Applied Mathematics, Heidelberg University

  • https://scholar.google.com.au/citations?user=-ZP_SrwAAAAJ&hl=en

Travel and Contact Information

Find event

Frank Adams 1
Alan Turing Building
Manchester

Contact event

Srikara Pranesh

01612755917

Srikara.Pranesh@manchester.ac.uk

Contact us

  • +44 (0) 161 306 6000

Find us

The University of Manchester
Oxford Rd
Manchester
M13 9PL
UK

Connect with the University

  • Facebook page for The University of Manchester
  • X (formerly Twitter) page for The University of Manchester
  • YouTube page for The University of Manchester
  • Instagram page for The University of Manchester
  • TikTok page for The University of Manchester
  • LinkedIn page for The University of Manchester

  • Privacy /
  • Copyright notice /
  • Accessibility /
  • Freedom of information /
  • Charitable status /
  • Royal Charter Number: RC000797
  • Close menu
  • Home
    • Featured events
    • Today's events
    • The Whitworth events
    • Manchester Museum events
    • Jodrell Bank Discovery Centre events
    • Martin Harris Centre events
    • The John Rylands Library events
    • Exhibitions
    • Conferences
    • Lectures and seminars
    • Performances
    • Events for prospective students
    • Sustainability events
    • Family events
    • All events