Events at The University of Manchester
  • University home
  • Events
  • Home
  • Exhibitions
  • Conferences
  • Lectures and seminars
  • Performances
  • Events for prospective students
  • Sustainability events
  • Family events
  • All Events

Tracing fluid transfer across subduction zones using iron and zinc stable isotopes

image
Dates:7 November 2018
Times:13:00 - 14:00
What is it:Seminar
Organiser:Department of Earth and Environmental Sciences
Who is it for:University staff, Current University students
Speaker:Dr Helen Williams
See travel and contact information
Add to your calendar

More information

  • School of Earth and Environmental Sciences

Other events

  • In category "Seminar"
  • By Department of Earth and Environmental Sciences

Our speaker is Dr Helen Williams from the Department of Earth Sciences at the University of Cambridge.

Subduction zones are the main site of volatile element transfer between the downgoing plate, the overriding mantle wedge and the Earth’s deep interior. The breakdown of serpentine minerals within the downgoing slab and the fluids released play a fundamental role in volatile cycling as well as the redox evolution of the sub-arc mantle. Constraining subduction-related serpentinite devolatilisation is essential in order to better understand of the nature and composition of slab-derived fluids and fluid/rock interactions. Iron and Zn stable isotopes are recently-established geochemical tracers can trace fluid composition and speciation as isotope partitioning is driven by changes in oxidation state, coordination, and bonding environment. In the case of serpentinite devolatilisation, Fe isotope fractionation should reflect changes in Fe redox state and the formation of chloride and sulfide complexes; Zn isotope fractionation should be sensitive to complexation with carbonate, sulfide and sulfate anions. This study involved targeting samples from Western Alps ophiolite complexes, interpreted as remnants of serpentinized oceanic lithosphere metamorphosed and devolatilized during subduction. A striking negative correlation is present between bulk serpentinite Fe isotope composition and proportion of ferric iron, with the highest grade samples displaying the heaviest Fe isotope compositions and proportion of oxidised iron. The same samples also display a corresponding variation in Zn isotopes, with the highest grade samples displaying isotopically light compositions. The negative correlation between Fe and Zn isotopes and decrease in ferric iron content can explained by serpentinite sulphide breakdown and the release of fluids enriched in isotopically light Fe and heavy Zn sulphate complexes. The migration of these highly oxidizing sulfate-bearing fluids from the slab to the slab-mantle interface or mantle wedge has important implications for the redox evolution of the sub-arc mantle and the transport of metals from the subducting slab.

Coffee and tea will be available after the seminar in the first floor foyer of the Williamson Building.

Speaker

Dr Helen Williams

Role: Lecturer in Geochemistry, Petrology and Cosmochemistry

Organisation: University of Cambridge

  • https://www.esc.cam.ac.uk/directory/helen-williams

Travel and Contact Information

Find event

G.03
Williamson Building
Manchester

Contact event

Margherita Polacci

0161-275-3822

margherita.polacci@manchester.ac.uk

Contact us

  • +44 (0) 161 306 6000

Find us

The University of Manchester
Oxford Rd
Manchester
M13 9PL
UK

Connect with the University

  • Facebook page for The University of Manchester
  • X (formerly Twitter) page for The University of Manchester
  • YouTube page for The University of Manchester
  • Instagram page for The University of Manchester
  • TikTok page for The University of Manchester
  • LinkedIn page for The University of Manchester

  • Privacy /
  • Copyright notice /
  • Accessibility /
  • Freedom of information /
  • Charitable status /
  • Royal Charter Number: RC000797
  • Close menu
  • Home
    • Featured events
    • Today's events
    • The Whitworth events
    • Manchester Museum events
    • Jodrell Bank Discovery Centre events
    • Martin Harris Centre events
    • The John Rylands Library events
    • Exhibitions
    • Conferences
    • Lectures and seminars
    • Performances
    • Events for prospective students
    • Sustainability events
    • Family events
    • All events