Events at The University of Manchester
  • University home
  • Events
  • Home
  • Exhibitions
  • Conferences
  • Lectures and seminars
  • Performances
  • Events for prospective students
  • Family events
  • All Events

Dan Lucas - Stabilisation of exact coherent structures using time-delayed feedback in two-dimensional turbulence

Dates:11 November 2020
Times:14:00 - 15:00
What is it:Seminar
Organiser:Department of Mathematics
Who is it for:University staff, External researchers, Current University students
See travel and contact information
Add to your calendar

More information

  • Department of Mathematics

Other events

  • In category "Seminar"
  • In group "(Maths) Physical applied mathematics"
  • In group "(Maths) Maths seminar series"
  • By Department of Mathematics

Dan Lucas (Keele) joins us for this virtual seminar in the Physical Applied Mathematics Series

This seminar will be held via Zoom. Please email alice.thompson@manchester.ac.uk if you require the meeting details.

Title: Stabilisation of exact coherent structures using time-delayed feedback in two-dimensional turbulence

Abstract: Time-delayed feedback control (Pyragas 1992 Phys. Letts. 170 (6) 421-428), is a method known to stabilise periodic orbits in chaotic dynamical systems. A system dx/dt = f(x) is supplemented with G(x(t)-x(t-T) where G is a `gain matrix' and T a time delay. The form of the delay term is such that it will vanish for any orbit of period T, making it an orbit of the uncontrolled system. This non-invasive feature makes the method attractive for stabilising exact coherent structures in fluid turbulence. Here we validate the method using the basic flow in Kolmogorov flow; a two-dimensional incompressible viscous flow with a sinusoidal body force. Linear predictions for the laminar basic flow are well captured by direct numerical simulation. This result demonstrates a work-around of the so-called “odd-number” limitation in flows which have a continuous symmetry. By applying an adaptive method to adjust the streamwise translation of the delay, a known nonlinear travelling wave solution is able to be stabilised up to relatively high Reynolds number. Finally an adaptive method to converge the period T is also presented to enable periodic orbits to be stabilised in a proof of concept study at low Reynolds numbers. These results demonstrate that unstable ECSs may be found by timestepping a modified set of equations, thus circumventing the usual convergence algorithms.

Travel and Contact Information

Find event

Via Zoom.

Contact event

Alice Thompson

alice.thompson@manchester.ac.uk

Share / follow event

Contact us

  • +44 (0) 161 306 6000

Find us

The University of Manchester
Oxford Rd
Manchester
M13 9PL
UK

Connect with the University

  • Facebook page for The University of Manchester
  • Twitter page for The University of Manchester
  • YouTube page for The University of Manchester
  • Google+ page for The University of Manchester
  • Pinterest page for The University of Manchester

  • Privacy /
  • Copyright notice /
  • Accessibility /
  • Freedom of information /
  • Charitable status /
  • Royal Charter Number: RC000797
  • Close menu
  • Home
    • Featured events
    • Today's events
    • The Whitworth events
    • Manchester Museum events
    • Jodrell Bank Discovery Centre events
    • Martin Harris Centre events
    • The John Rylands Library events
    • Exhibitions
    • Conferences
    • Lectures and seminars
    • Performances
    • Events for prospective students
    • Family events
    • All events