Events at The University of Manchester
  • University home
  • Events
  • Home
  • Exhibitions
  • Conferences
  • Lectures and seminars
  • Performances
  • Events for prospective students
  • Sustainability events
  • Family events
  • All Events

Advances in Data Science Seminar : ‘A global-local approach for detecting eQTL hotspots in ultra-high multiple response regressions’

Dates:1 October 2019
Times:14:00 - 15:00
What is it:Seminar
Organiser:External organiser
Who is it for:University staff, Adults, Current University students, General public
Speaker:Leonardo Bottolo
See travel and contact information
Add to your calendar

More information

  • Register via Eventbrite

Other events

  • In category "Seminar"
  • By External organiser

Institute for Data Science & Artificial Intelligence

Leonardo Bottolo (University of Cambridge / Alan Turing Institute) - A global-local approach for detecting eQTL hotspots in ultra-high multiple response regressions

Abstract: We consider how to specify prior distributions for top-level scale parameters in a sparse hierarchical regression model with many predictors and many responses. Our model borrows information across responses through a parameter that captures the “propensity” of a predictor to be a hotspot, i.e., to influence several responses at once.

It can detect associations between p = 10E4 ? 10E6 predictors (e.g., genetic variants) and q = 10E2 ? 104 responses (e.g., molecular expression levels), but for very large q, inference can be sensitive to the variance of the hotspot “propensity”. While this sensitivity can be cast as a general problem of specifying prior distributions in variance components, we show that it is also caused by a lack of adjustment for the number of responses considered. To solve this problem, we introduce a control parameter which depends on q as part of a global-local hotspot prior variance based on the Horseshoe prior. Our proposal shrinks noise globally and hence adapts to the sparse context of eQTL analyses, while being robust to individual signals, thus leaving the effects of hotspot genetic variants unshrunk. It can, therefore, detect important pleiotropic effects, of particular interest for current research in genetics. Inference is carried out using an annealed Variational Bayes procedure, which allows fast and efficient exploration of multimodal distributions. If time will permit, we will also illustrate an extension to include annotation to help the detection of important associations while retaining the computational advantages of the Variational Bayes formulation. We illustrate the benefits of proposed models on simulated data sets and two real examples that aim to detect hotspots pleiotropic effects in eQTL experiments.

This is joint work with Helene Ruffieux (EPFL Lausanne and MRC-BSU Cambridge) and Sylvia Richardson (MRC-BSU Cambridge).

Bio: Dr Leonardo Bottolo is Reader in Statistics for Biomedicine at the University of Cambridge. He received his PhD in Methodological Statistics from the University of Trento, Italy, in 2001. Before joining the University of Cambridge, he was appointed Senior Lecturer in Statistics in the Department of Mathematics, Imperial College. He worked as postdoc in the Mathematical Genetics group, University of Oxford and at the Institute of Mathematical Sciences, Imperial College. He is currently interested in inference for tall data, y, collected on n data points with n very large and approximate Bayesian methods such as Variational Bayes.

Register to attend via Eventbrite

Speaker

Leonardo Bottolo

Organisation: University of Cambridge / Alan Turing Institute

Travel and Contact Information

Find event

Room 3.009
Aliiance Manchester Business School
Booth Street West
Manchester

Contact event

Orla Burden

Orla.burden@manchester.ac.uk

Contact us

  • +44 (0) 161 306 6000

Find us

The University of Manchester
Oxford Rd
Manchester
M13 9PL
UK

Connect with the University

  • Facebook page for The University of Manchester
  • X (formerly Twitter) page for The University of Manchester
  • YouTube page for The University of Manchester
  • Instagram page for The University of Manchester
  • TikTok page for The University of Manchester
  • LinkedIn page for The University of Manchester

  • Privacy /
  • Copyright notice /
  • Accessibility /
  • Freedom of information /
  • Charitable status /
  • Royal Charter Number: RC000797
  • Close menu
  • Home
    • Featured events
    • Today's events
    • The Whitworth events
    • Manchester Museum events
    • Jodrell Bank Discovery Centre events
    • Martin Harris Centre events
    • The John Rylands Library events
    • Exhibitions
    • Conferences
    • Lectures and seminars
    • Performances
    • Events for prospective students
    • Sustainability events
    • Family events
    • All events