Events at The University of Manchester
  • University home
  • Events
  • Home
  • Exhibitions
  • Conferences
  • Lectures and seminars
  • Performances
  • Events for prospective students
  • Sustainability events
  • Family events
  • All Events

Sasha Panfilov -- In silico–in vitro approach to study and control cardiac arrhythmias

Patterned pufferfish scales demonstrating a Turing pattern in the natural world
Dates:17 March 2022
Times:15:00 - 16:00
What is it:Seminar
Organiser:Department of Mathematics
Who is it for:University staff, External researchers, Current University students
Speaker:Sasha Panfilov
See travel and contact information
Add to your calendar

More information

  • Mathematics in the life sciences
  • Department of Mathematics

Other events

  • In category "Seminar"
  • In group "(Maths) Mathematics in the life sciences "
  • In group "(Maths) Maths seminar series"
  • By Department of Mathematics

(via Zoom) Join us for this seminar by Sasha Panfilov (Gent, Belgium) as part of the North West Seminar Series in Mathematical Biology and Data Sciences. Details of the full series can be found here https://www.cms.livjm.ac.uk/APMSeminar/

The talk will be hosted in person and the University of Liverpool and on zoom, please contact carl.whitfield@manchester.ac.uk or B.Vasiev@liverpool.ac.uk for the zoom link, or sign up to the mailing list.

Abstract: Sudden cardiac death as a result of cardiac arrhythmias is the leading cause of death in the industrialized countries. Although cardiac arrhythmias has been studied well over a century, their underlying mechanisms remain largely unknown. One of the main problems is that cardiac arrhythmias occur at the level of the whole organ only, while in most of the cases only single cell experiments can be performed. Due to these limitations alternative approaches, such as multiscale biophysical modelling of the heart, are currently of great interest. Such methodology is extremely valuable if it combined with experimental and clinical methodology.

In my talk I will present results of research which combine usage of modelling and modern experimental techniques. In particular, I will report on studies in which properties of cardiac tissue were manipulated using optogenetics and show how this technology can be used to study basic properties of cardiac propagation and to control cardiac arrhythmias using Attract-Anchor-Drag method.

I will also report on concept of biological self-restoring system that allows automatic detection and correction of such abnormal excitation rhythms. For the heart, its realization involves the integration of ion channels with newly designed gating properties into cardiomyocytes. This allows cardiac tissue to i) discriminate between normal rhythm and arrhythmia based on frequency-dependent gating and ii) generate an ionic current for termination of the detected arrhythmia. We show in silico, that for both human atrial and ventricular arrhythmias, activation of these channels leads to rapid and repeated restoration of normal excitation rhythm. Experimental validation is provided by injecting the designed channel current for arrhythmia termination in human atrial myocytes using dynamic clamp.

To subscribe to the mailing list for this event series, please send an e-mail with the phrase “subscribe math-lifesci-seminar” in the message body to listserv@listserv.manchester.ac.uk

Speaker

Sasha Panfilov

Role: Professor

Organisation: Gent University

  • https://heart.ugent.be/

Travel and Contact Information

Find event

Hybrid

Contact event

Carl Whitfield

carl.whitfield@manchester.ac.uk

Contact us

  • +44 (0) 161 306 6000

Find us

The University of Manchester
Oxford Rd
Manchester
M13 9PL
UK

Connect with the University

  • Facebook page for The University of Manchester
  • X (formerly Twitter) page for The University of Manchester
  • YouTube page for The University of Manchester
  • Instagram page for The University of Manchester
  • TikTok page for The University of Manchester
  • LinkedIn page for The University of Manchester

  • Privacy /
  • Copyright notice /
  • Accessibility /
  • Freedom of information /
  • Charitable status /
  • Royal Charter Number: RC000797
  • Close menu
  • Home
    • Featured events
    • Today's events
    • The Whitworth events
    • Manchester Museum events
    • Jodrell Bank Discovery Centre events
    • Martin Harris Centre events
    • The John Rylands Library events
    • Exhibitions
    • Conferences
    • Lectures and seminars
    • Performances
    • Events for prospective students
    • Sustainability events
    • Family events
    • All events